Angular momentum transport by astrophysical turbulence

Christophe Gissinger Ecole Normale Supérieure, Paris

Michael Pereira (ENSAM Paris)

Stephan Fauve (ENS)

Marlone Vernet (ENS)

TRANSPORT BY TURBULENCE

An exemple: transport of heat in Rayleigh-Benard

• Heat :
$$H = \rho c_p T$$

TRANSPORT BY TURBULENCE

An exemple: transport of heat in Rayleigh-Benard

• Heat : $H = \rho c_p T$

Transport of angular momentum in rotational flows

• Angular momentum (AM) : $\Gamma = \Omega r^2$

TRANSPORT BY TURBULENCE

An exemple: transport of heat in Rayleigh-Benard

• Heat : $H = \rho c_p T$

Transport of angular momentum in rotational flows

• Angular momentum (AM) : $\Gamma = \Omega r^2$

→ Is it possible to understand and predict the angular momentum flux $J_{\Omega} = f(\Delta \Omega, \nu)$? → Role of the boundary conditions on the turbulent transport ?

ASTROPHYSICAL MOTIVATION

Astrophysical turbulence is ubiquitous, but tricky to explain ...

ASTROPHYSICAL MOTIVATION

Astrophysical turbulence is ubiquitous, but tricky to explain ...

ACCRETION DISKS:

- Huge accretion rate ⇔ Outward transport of angular momentum
- Weak turbulence

ASTROPHYSICAL MOTIVATION

Astrophysical turbulence is ubiquitous, but tricky to explain ...

ACCRETION DISKS:

- Huge accretion rate ⇔ Outward transport of angular momentum
- Weak turbulence

AN ACCRETION DISK IN THE LABORATORY

Liquid metal experiment:

- Not an MRI experiment !
- Prediction for accretion rates
- Ultimate regime for angular momentum transport

INTRODUCTION | ACCRETION DISK IN THE LAB | ANGULAR MOMENTUM TRANSPORT | PREDICTIONS AND OBSERVATIONS

LABORATORY MODELS OF ACCRETION DISKS

INTRODUCTION | ACCRETION DISK IN THE LAB | ANGULAR MOMENTUM TRANSPORT | PREDICTIONS AND OBSERVATIONS

LABORATORY MODELS OF ACCRETION DISKS

Limitations due to the use of Taylor-Couette flows:

LABORATORY MODELS OF ACCRETION DISKS

Limitations due to the use of Taylor-Couette flows:

I - Keplerian rotation:
$$\frac{u_{\varphi}^2}{r} \sim \frac{GM}{r^2} \Rightarrow u_{\varphi} = \frac{K}{\sqrt{r}}$$
 (linearly stable, but weakly turbulent)

I - Couette profile $u_{\varphi} = Ar + \frac{B}{r}$ (either quasi-Keplerian or fully turbulent)

LABORATORY MODELS OF ACCRETION DISKS

Limitations due to the use of Taylor-Couette flows:

I - Keplerian rotation:
$$\frac{u_{\varphi}^2}{r} \sim \frac{GM}{r^2} \Rightarrow u_{\varphi} = \frac{K}{\sqrt{r}}$$

(linearly stable, but weakly turbulent)

I - Couette profile $u_{\varphi} = Ar + \frac{B}{r}$ (either quasi-Keplerian or fully turbulent)

II - Angular momentum (and rotation) injected at the boundaries

LABORATORY MODELS OF ACCRETION DISKS

Limitations due to the use of Taylor-Couette flows:

I - Keplerian rotation:
$$\frac{u_{\varphi}^2}{r} \sim \frac{GM}{r^2} \Rightarrow u_{\varphi} = \frac{K}{\sqrt{r}}$$

(linearly stable, but weakly turbulent)

I - Couette profile $u_{\varphi} = Ar + \frac{B}{r}$ (either quasi-Keplerian or fully turbulent)

II - Angular momentum (and rotation) injected at the boundaries

 \rightarrow The Lorentz force $\; j \times B \; \text{drives}$ the flow in the azimuthal direction

 \rightarrow The Lorentz force $\; j \times B \; \text{drives}$ the flow in the azimuthal direction

 \rightarrow The Lorentz force $\;j \times B$ drives the flow in the azimuthal direction

KEPLERIAN TURBULENCE

- Efficient driving of the flow, up to a few m/s
- An exact Keplerian rotation rate

KEPLERIAN TURBULENCE

- Efficient driving of the flow, up to a few m/s
- An exact Keplerian rotation rate

(Vernet et al, JFM. 924, A29 (2021) (Vernet et al, accepted in PRL (2022)

KEPLERIAN TURBULENCE

- Efficient driving of the flow, up to a few m/s
- An exact Keplerian rotation rate

→ Unstable boundary layers generate the turbulence, but are not involve in the angular momentum injection

→ First laboratory model of a thin, turbulent disk in Keplerian rotation and subjected to a magnetic field

(Vernet et al, JFM. 924, A29 (2021) (Vernet et al, accepted in PRL (2022)

Angular momentum flux :

$$J_{\Omega} = r^3 \left(\langle u_r \Omega \rangle - \nu \partial_r \langle \Omega \rangle \right)$$

Efficiency of the turbulent transport:

$$\rightarrow$$
 Nusselt number $Nu = \frac{J_{\Omega}}{J_{\Omega}^{lam}} = \frac{J_{\Omega}}{2\nu r^2 \Omega}$

Magnitude of the turbulence :

$$\rightarrow$$
 Taylor number $Ta = \frac{\Omega^2 r d^3}{\nu^2}$

Angular momentum flux :

$$J_{\Omega} = r^3 \left(\langle u_r \Omega \rangle - \nu \partial_r \langle \Omega \rangle \right)$$

Efficiency of the turbulent transport:

$$\rightarrow$$
 Nusselt number $Nu = \frac{J_{\Omega}}{J_{\Omega}^{lam}} = \frac{J_{\Omega}}{2\nu r^2 \Omega}$

Magnitude of the turbulence :

$$\rightarrow$$
 Taylor number $Ta = \frac{\Omega^2 r d^3}{\nu^2}$

Is there a scaling law Nu = f(Ta)?

Angular momentum flux :

$$J_{\Omega} = r^3 \left(\langle u_r \Omega \rangle - \nu \partial_r \langle \Omega \rangle \right)$$

Kraichnan's ultimate regime (1962):

Nu = Ta^{β} \Rightarrow $J_{\Omega} = 2\nu r^2 \Omega \left(\frac{\Omega^2 r d^3}{\nu^2}\right)^{\beta}$

 J_{Ω} must be independent of ν for sufficiently turbulent flows $~\rightarrow \beta = 1/2$

 \Rightarrow Nu = \sqrt{Ta}

BUT : Previous experiments rather reported $\beta = 0.38$ due to the effect of boundary layers ... (Huisman et al 2012, Gils et al 2011)

Efficiency of the turbulent transport:

 $\rightarrow \text{ Nusselt number } Nu = \frac{J_{\Omega}}{J_{\Omega}^{lam}} = \frac{J_{\Omega}}{2\nu r^2 \Omega}$

Magnitude of the turbulence :

 \rightarrow Taylor number

$$Ta = \frac{\Omega^2 r d^3}{\nu^2}$$

Is there a scaling law Nu = f(Ta)?

Angular momentum flux :

$$J_{\Omega} = r^3 \left(\langle u_r \Omega \rangle - \nu \partial_r \langle \Omega \rangle \right)$$

• Clear-cut scaling law $Nu_{\Omega}^* \sim \sqrt{Ta}$ on several decades

 \rightarrow This **<u>turbulent</u>** keplerian flow exhibits the Kraichnan ultimate regime

Kraichnan's ultimate regime (1962):

Nu = Ta^{$$\beta$$} \Rightarrow $J_{\Omega} = 2\nu r^2 \Omega \left(\frac{\Omega^2 r d^3}{\nu^2}\right)^{\beta}$

 J_{Ω} must be independent of ν for sufficiently turbulent flows $~\rightarrow \beta = 1/2$

 \Rightarrow Nu = \sqrt{Ta}

BUT : Previous experiments rather reported $\beta = 0.38$ due to the effect of boundary layers ... (Huisman et al 2012, Gils et al 2011)

PREDICTION FOR ASTROPHYSICAL ACCRETION DISKS

PREDICTION FOR ASTROPHYSICAL ACCRETION DISKS

PREDICTION FOR ASTROPHYSICAL ACCRETION DISKS

CONCLUSION

Laboratory model of an accretion disk:

- interesting alternative to Taylor-Couette flows (not MRI !)
- Ultimate viscosity-free transport of angular momentum
- Prediction for accretion disks

CONCLUSION

Laboratory model of an accretion disk:

- interesting alternative to Taylor-Couette flows (not MRI !)
- Ultimate viscosity-free transport of angular momentum
- Prediction for accretion disks

A universal picture for turbulent transport, independent of the origin of turbulence?

CONCLUSION

Laboratory model of an accretion disk:

- interesting alternative to Taylor-Couette flows (not MRI !)
- Ultimate viscosity-free transport of angular momentum
- Prediction for accretion disks

A universal picture for turbulent transport, independent of the origin of turbulence?

Hidden dynamo spins down radiative stars, L. Petitdemange, F. Marcotte, C. Gissinger, Science, editorial revision (2022)

- Subcritical transition to turbulence triggered by a magnetic dynamo
- AGAIN : Ultimate regime for the AM transport in radiative stars (despite a very different source for turbulence)

\Rightarrow See poster in session S02 (PNPS)

THANK YOU

- 1. Turbulence in electromagnetically-driven Keplerian flows,
- M. Vernet, M. Pereira, S. Fauve, C. Gissinger, Journal of Fluid Mechanics, 924, A29 (2021)
- 2. Angular momentum transport by Keplerian turbulence in liquid metals
- M. Vernet, S. Fauve, C. Gissinger, accepted in Physical Review Letter (2022)
- Hidden dynamo spins down radiative stars
 Petitdemange, F. Marcotte, C. Gissinger, Science, editorial revision (2022)