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An exemple: transport of heat in Rayleigh-Benard

Hot plate

Cold plate

TRANSPORT BY TURBULENCE

• Heat : H = ρcpT
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An exemple: transport of heat in Rayleigh-Benard

Transport of angular momentum in rotational flows

Hot plate

Cold plate

Ω

Ω + ΔΩ

TRANSPORT BY TURBULENCE

• Heat : H = ρcpT

• Angular momentum (AM)  :  Γ = Ωr2
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An exemple: transport of heat in Rayleigh-Benard

Transport of angular momentum in rotational flows

Hot plate

Cold plate

Ω

Ω + ΔΩ

 Is it possible to understand and predict  the angular momentum flux  ? 
 Role of the boundary conditions on the turbulent transport ? 

→ JΩ = f(ΔΩ, ν)
→

TRANSPORT BY TURBULENCE

• Heat : H = ρcpT

• Angular momentum (AM)  :  Γ = Ωr2
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ASTROPHYSICAL MOTIVATION

Astrophysical turbulence is ubiquitous, but tricky to explain … 
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ACCRETION DISKS:

• Huge accretion rate   Outward transport of angular momentum


• Weak turbulence


⇔



ASTROPHYSICAL MOTIVATION

Astrophysical turbulence is ubiquitous, but tricky to explain … 

ACCRETION DISKS:

AN ACCRETION DISK IN THE LABORATORY

Liquid metal experiment: 
 

• Not an MRI experiment !


• Prediction for accretion rates


• Ultimate regime for angular momentum transport
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• Huge accretion rate   Outward transport of angular momentum


• Weak turbulence


⇔



LABORATORY MODELS OF ACCRETION DISKS

ACCRETION DISKS

Ω

Ω + ΔΩ
TAYLOR-COUETTE FLOWS
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LABORATORY MODELS OF ACCRETION DISKS

ACCRETION DISKS

Ω

Ω + ΔΩ
TAYLOR-COUETTE FLOWS

Limitations due to the use of Taylor-Couette flows: 
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LABORATORY MODELS OF ACCRETION DISKS

ACCRETION DISKS TAYLOR-COUETTE FLOWS

 I - Keplerian rotation: 


    ( linearly stable, but weakly turbulent )


u2
φ

r
∼

GM
r2

⇒ uφ =
K

r
 I -  Couette profile  


( either quasi-Keplerian or fully turbulent )


uφ = Ar +
B
r

Ω

Ω + ΔΩ

Limitations due to the use of Taylor-Couette flows: 
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LABORATORY MODELS OF ACCRETION DISKS

ACCRETION DISKS TAYLOR-COUETTE FLOWS

 I - Keplerian rotation: 


    ( linearly stable, but weakly turbulent )


II - Volume injection of angular momentum


u2
φ

r
∼

GM
r2

⇒ uφ =
K

r
 I -  Couette profile  


( either quasi-Keplerian or fully turbulent )


II - Angular momentum (and rotation) 

injected at the boundaries


uφ = Ar +
B
r

Ω

Ω + ΔΩ

Limitations due to the use of Taylor-Couette flows: 

INTRODUCTION  |  ACCRETION DISK IN THE LAB  |  ANGULAR  MOMENTUM TRANSPORT  |  PREDICTIONS AND OBSERVATIONS



LABORATORY MODELS OF ACCRETION DISKS

ACCRETION DISKS TAYLOR-COUETTE FLOWS

Ω

Ω + ΔΩ

Need a different setup to model  
accretion disks

 I - Keplerian rotation: 


    ( linearly stable, but weakly turbulent )


II - Volume injection of angular momentum


u2
φ

r
∼

GM
r2

⇒ uφ =
K

r
 I -  Couette profile  


( either quasi-Keplerian or fully turbulent )


II - Angular momentum (and rotation) 

injected at the boundaries


uφ = Ar +
B
r

Limitations due to the use of Taylor-Couette flows: 
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The Kepler experiment

ELECTROMAGNETICALLY-DRIVEN FLOWS
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The Kepler experiment

ELECTROMAGNETICALLY-DRIVEN FLOWS

 The Lorentz force   drives the flow in the azimuthal direction  → j × B

J
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The Kepler experiment

ELECTROMAGNETICALLY-DRIVEN FLOWS

 The Lorentz force   drives the flow in the azimuthal direction  → j × B

B

J
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The Kepler experiment

ELECTROMAGNETICALLY-DRIVEN FLOWS

B

J

F

 The Lorentz force   drives the flow in the azimuthal direction  → j × B

Geometry and control parameters: 

• Liquid gallium

• Thin disk, h=1.5cm , D=40 cm

• Radial electrical current I~3000A, Magnetic field B~100mT

• Temperature control


Measurements: 

• Radial and azimuthal velocity (US Doppler velocimetry, potential probes)

• Pressure fluctuations

• Induced magnetic field (Hall probes)
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KEPLERIAN TURBULENCE

(Vernet et al, JFM. 924, A29 (2021)

• Efficient driving of the flow, up to a few m/s

• An exact Keplerian rotation rate
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(Vernet et al, accepted in PRL (2022)



KEPLERIAN TURBULENCE

(Vernet et al, JFM. 924, A29 (2021)

(Vernet et al, JFM 

  turbulent spectrum
⇒ k−5/3• Efficient driving of the flow, up to a few m/s

• An exact Keplerian rotation rate
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ρ ( ∂u
∂t

+ (u . ∇)u) = − ∇P + ρν∇2u + j × B Uφ =
ln Re

κ
I0B0

4πρr

KEPLERIAN TURBULENCE

(Vernet et al, JFM. 924, A29 (2021)

(Vernet et al, JFM 

• Efficient driving of the flow, up to a few m/s

• An exact Keplerian rotation rate

 Unstable boundary layers generate the turbulence, but are not involve in the angular momentum injection


 First laboratory model of a thin, turbulent disk in Keplerian rotation and subjected to a magnetic field  

→

→
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  turbulent spectrum
⇒ k−5/3



SCALING LAW FOR ANGULAR MOMENTUM TRANSPORT

Efficiency of the turbulent transport: 

  Nusselt number        


Magnitude of the turbulence :    

  Taylor number           


→ Nu =
JΩ

Jlam
Ω

=
JΩ

2νr2Ω

→ Ta =
Ω2rd3

ν2

JΩAngular momentum flux  :

JΩ = r3 (⟨urΩ⟩ − ν∂r⟨Ω⟩)
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Is there a scaling law  ? 
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Jlam
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SCALING LAW FOR ANGULAR MOMENTUM TRANSPORT

Efficiency of the turbulent transport: 

  Nusselt number        


Magnitude of the turbulence :    

  Taylor number           


Is there a scaling law  ? 

→ Nu =
JΩ

Jlam
Ω

=
JΩ

2νr2Ω

→ Ta =
Ω2rd3

ν2

Nu = f(Ta)

Kraichnan’s ultimate regime (1962):  




 must be independent of  for sufficiently 

turbulent flows 


 

BUT : 
Previous experiments rather reported  due 
to the effect of boundary layers … 
(Huisman et al 2012, Gils et al 2011 )

Nu = Taβ ⇒ JΩ = 2νr2Ω ( Ω2rd3

ν2 )
β

JΩ ν
→ β = 1/2

⇒ Nu = Ta

β = 0.38

JΩAngular momentum flux  :

JΩ = r3 (⟨urΩ⟩ − ν∂r⟨Ω⟩)
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SCALING LAW FOR ANGULAR MOMENTUM TRANSPORT

Kraichnan’s ultimate regime (1962):  




 must be independent of  for sufficiently 

turbulent flows 


 

BUT : 
Previous experiments rather reported  due 
to the effect of boundary layers … 
(Huisman et al 2012, Gils et al 2011 )

Nu = Taβ ⇒ JΩ = 2νr2Ω ( Ω2rd3

ν2 )
β

JΩ ν
→ β = 1/2

⇒ Nu = Ta

β = 0.38

JΩ

• Clear-cut scaling law  on several decades 

 This turbulent keplerian flow exhibits the Kraichnan 
ultimate regime 

Nu*Ω ∼ Ta

→

Angular momentum flux  :

JΩ = r3 (⟨urΩ⟩ − ν∂r⟨Ω⟩)
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PREDICTION FOR ASTROPHYSICAL ACCRETION DISKS

II - DIMENSIONLESS ENERGY DISSIPATION IN DISKS 

 𝒟 =
·M
·M0

=
0.8r3ℒ

𝒢MΣΩH4
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II - DIMENSIONLESS ENERGY DISSIPATION IN KEPLER 
EXPERIMENT 

 
𝒟 =
JΩ

ν2R2
e

= 4
Nu

Ta D ∼ 4 × 10−4
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II - DIMENSIONLESS ENERGY DISSIPATION IN KEPLER 
EXPERIMENT 

 
𝒟 =
JΩ

ν2R2
e

= 4
Nu

Ta D ∼ 4 × 10−4

T-Tauri  
(lower bound)

• Predicted accretion rates in very good agreement with 
observations


• Energy dissipation much smaller than previous estimate, 
compatible with recent results on weak turbulence 
(Flaherty et al, ApJ, 2015 : )vturb ∼ 0.05cS



CONCLUSION

Laboratory model of an accretion disk: 

• interesting alternative to Taylor-Couette flows (not MRI !)


• Ultimate viscosity-free transport of angular momentum 


• Prediction for accretion disks
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CONCLUSION

Laboratory model of an accretion disk: 

• interesting alternative to Taylor-Couette flows (not MRI !)


• Ultimate viscosity-free transport of angular momentum 


• Prediction for accretion disks


A universal picture for turbulent transport, independent of the origin of turbulence ?

• Subcritical transition to turbulence triggered by a magnetic dynamo

• AGAIN : Ultimate regime for the AM transport in radiative stars (despite a very different source for 

turbulence)

See poster in session S02 (PNPS) ⇒

Hidden dynamo spins down radiative stars, L. Petitdemange, F. Marcotte, C. Gissinger, Science, editorial revision (2022)
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